Build Your First Full Stack
App With Flask

Presented by Jeremie Bornais
Sample code available at:
github.com/jere-mie/flask-workshop

web development
one drop at a time

¢ Flask

https://github.com/jere-mie/flask-workshop

A Little About Me

e Full Stack Software Developer at Assent
e Co-Founder of WinHacks and BorderHacks
e Former Research & Teaching assistant at UWindsor

e Former President of the UWindsor Computer Science
Society

e Former Project Lead at GDSC

e 10+ Hackathon participant, mentor, speaker,
organizer

jeremie.bornais.ca
github.com/jere-mie
linkedin.com/in/jeremie-bornais

https://jeremie.bornais.ca/
https://github.com/jere-mie
https://linkedin.com/in/jeremie-bornais

Agenda

1. About Flask
o Qverview of the framework, what it is, why you should use it

2. Installation
o Simple step by step installation instructions

3. Your First App
o The structure of a Flask app, and getting it up and running

4. Routes and Templates
o Adding new routes to the app, rendering templates, inheriting from templates

5. Next Steps
o SQLAIchemy, User Authentication, and other ways to extend your app

6. Interactive Demo

About Flask

What it is and why you should use it

What is Flask?

e A micro web framework written in Python
e Used for coding the back end of websites
e Very light by design

e Has many additional addons that can be used in addition to it (WTFormes,
SQLAIchemy, Flask-Login. etc.)

Why use it?

e Very simple to get started
e Many great addons
e Hackathon-friendly

e Scales well

e More customizable, let's you decide how you want to solve certain problems

Installation

Just a "pip install" away!

"pip install flask”

e Python 3.5+ is required to install Flask

e Pip must also be installed to be able to install it

e Venv is recommended to make handling libraries easier
e Simply run pip install flask to install it!

e You may need to use pip3 instead of pip if you're on a Linux or Unix system

e Link to download Python and pip: python.org

https://python.org/

Your First App

Boilerplate code to get you started

<[>

The Bare Minimum

from flask import Flask
app = Flask(__name_)

@app.route('/")
def hello world():
return 'Hello, World!'

if name_ == " main__ ":
app.run(debug=True)
1. Save this file to app.py

2. Run python app.py (You may need to run python3 app.py instead)
3. Go to http://127.0.0.1:5000/

http://127.0.0.1:5000/

Common structure of a Flask app

- app.py
- .env
- .gitignore
- static/
- style.css
- script.js
- templates/
- layout.html
- home.html

Routes and Templates

Add pages, use real HTML files

Common Functions

render_template()

Used to render an HTML template file in the "templates" folder

url_for()

Used to find the URL of a particular route, often used for links and specifying file
sources (ex. css files)

redirect()

Used to redirect the user to a different URL or route. Often used with url for() to
redirect to different routes on the website

Your Own Routes

@app.route('/about")
def about():
return render_template('about.html')

@app.route('/contact')
def contact():
return render_template('contact.html')

Passing Data to Routes

@app.route('/posts/<post _id>"')
def posts(post _id):
do something with post id
post = get post(post _id)
return render_template('post.html', post=post)

Linking this route with url_for():

View Post

Templates & Inheritance

In layout.html:

<!DOCTYPE html>
<html>
<head><title>Title</title></head>
<body>
{% block content %}{% endblock %}
</body>
</html>

In home.html:

{% extends 'layout.html' %}
{% block content %}
<hl1l>Hello World!</h1>

{% endblock %}

More on Templates

Using a for loop:

{% for contact in contacts %}
<h3>{{ contact }}</h3>
{% endfor %}

Using an if statement:

{% if current _user.is authenticated %}
<h3>Welcome User!</h3>

{% else %}
<h3>You Must Login!</h3>

{% endif %}

Next Steps

Extending your app's functionality

Common packages used with Flask

e Flask-SQLAlchemy

o Simple extension that allows you to connect to a variety of SQL databases
e Flask-Login

o Handles user sessions, makes authentication a breeze.
e Gunicorn

o When used in conjunction with a reverse proxy (like caddy), allows for the easy
deployment of the app.

e Flask-Uploads
o Makes handling user file uploads simple and secure.

e bcrypt
o Used for hashing and checking passwords, makes authentication more secure.

Interactive Demo

Let's make something!

Questions?

Ask away!

THANK YOU FOR JOINING!

| hope you learned something new €

Remember, the source code and these slides can be found here:
github.com/jere-mie/flask-workshop

Learn How To Host Your Flask App For Free Here:
blog.bornais.ca/posts/2023-10-18-gcp-caddy-tutorial

https://github.com/jere-mie/flask-workshop
https://blog.bornais.ca/posts/2023-10-18-gcp-caddy-tutorial/

